A Integral da ETR apenas com termos térmicos fica na forma:
\[L(z) = L(z_0)e^{-\int_{z_0}^z\beta \sec\zeta dz'} + \int_{z_0}^{z} \beta(z')B(z')e^{-\int_{z'}^z\beta(z'')\sec\zeta dz''}\sec\zeta dz.\]
\[L(z) = L(z_0)e^{-\int_{z_0}^z\beta \sec\zeta dz'} + \int_{z_0}^{z} \beta(z')B(z')e^{-\int_{z'}^z\beta(z'')\sec\zeta dz''}\sec\zeta dz.\]
\[L(z) = L(z_0)e^{-\int_{z_0}^z\beta \sec\zeta dz'} + \int_{z_0}^{z} \beta(z')B(z')e^{-\int_{z'}^z\beta(z'')\sec\zeta dz''}\sec\zeta dz.\]
% Inputs:
% fr - vector of wavenumber (cm-1)
% rad - vector of radiances (mW/m2 per cm-1 per strad)
% bt - vector of brightness temperature (Kelvin)
fr = COLOQUE AQUI O VALOR DE fr (em cm¯¹)
% Se voce for calcular RAD, defina BT: %%%%%%%%%%%%%5
bt = COLOQUE AQUI O VALOR DA TEMPERATURA (rm K)
% Se voce for calcular BT, defina RAD: %%%%%%%%%%%%%5
rad = COLOQUE AQUI O VALOR DE rad (em mW/m²/cm¯¹/sr)
% Constants; values from NIST (CODATA98)
c = 2.99792458e+08; % speed of light 299 792 458 m s-1
h = 6.62606876e-34; % Planck constant 6.626 068 76 x 10-34 J s
k = 1.3806503e-23; % Boltzmann constant 1.380 6503 x 10-23 J K-1
% Compute radiation constants c1 and c2
c1 = 2*h*c*c * 1e+11; % Changed 1e+8 to 1e+11 to convert Watts to milliWatts
c2 = (h*c/k) * 100;
% return bt = c2 * fr / log(1 + c1 * fr^3 / rad)
% Se for calcular BT: %%%%%%%%%%%%%%
bt = c2 * fr ./ log(1 + c1 * (fr.^3) ./ rad);
% Se for calcular RAD: %%%%%%%%%%%%%%
rad = c1 * fr.^3 ./ (exp((c2 * fr) ./ bt) - 1);
# Inputs:
# fr - vector of wavenumber (cm-1)
# rad - vector of radiances (mW/m2 per cm-1 per strad)
# bt - vector of brightness temperature (Kelvin)
import math
fr = COLOQUE AQUI O VALOR DE fr (em cm¯¹)
# Se voce for calcular RAD, defina BT: %%%%%%%%%%%%%5
bt = COLOQUE AQUI O VALOR DA TEMPERATURA (rm K)
# Se voce for calcular BT, defina RAD: %%%%%%%%%%%%%5
rad = COLOQUE AQUI O VALOR DE rad (em mW/m²/cm¯¹/sr)
# Constants; values from NIST (CODATA98)
c = 2.99792458e+08; # speed of light 299 792 458 m s-1
h = 6.62606876e-34; # Planck constant 6.626 068 76 x 10-34 J s
k = 1.3806503e-23; # Boltzmann constant 1.380 6503 x 10-23 J K-1
# Compute radiation constants c1 and c2
c1 = 2*h*c*c * 1e+11; # Changed 1e+8 to 1e+11 to convert Watts to milliWatts
c2 = (h*c/k) * 100;
# return bt = c2 * fr / log(1 + c1 * fr^3 / rad)
# Se for calcular BT: %%%%%%%%%%%%%%
bt = c2 * fr ./ math.log(1 + c1 * (fr^3) ./ rad);
# Se for calcular RAD: %%%%%%%%%%%%%%
rad = c1 * fr^3 / (math.exp((c2 * fr) / bt) - 1);
\[L(z) = L(z_0)e^{-\int_{z_0}^z\beta \sec\zeta dz'} + \int_{z_0}^{z} \beta(z')B(z')e^{-\int_{z'}^z\beta(z'')\sec\zeta dz''}\sec\zeta dz.\]